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Background 

Record linkage is the process of identifying and merging records that refer to the same entity across 
different data sets. This is particularly useful in scenarios where unique identifiers are not available or 
reliable. In R, two popular packages for performing record linkage are RecordLinkage and FastLink. 

Here is a user-friendly HTML version of this document, as well as the source code and files used in 
the linkages. 
 

RecordLinkage Package 

The RecordLinkage package provides tools for probabilistic record linkage and deduplication. It allows 
users to compare records based on various attributes, calculate similarity scores, and determine 
matches based on thresholds. Some of the key features included in this package are: 

• Pairwise Comparison: Compares all pairs of records from different datasets or within the same 
dataset. 

• Similarity Measures: Utilizes various similarity measures such as Jaro-Winkler, Levenshtein 
distance, and Soundex for string comparisons. 

• Blocking: Reduces the number of comparisons by grouping records into blocks based on certain 
criteria, thereby improving efficiency. 

• Probabilistic Matching: Implements the Fellegi-Sunter model for probabilistic record linkage and 
other methods, which calculates the likelihood of matches based on attribute similarities. 

• Other Features: Both supervised and unsupervised machine learning methods, manual review 
match status editing, optimized threshold review specification (e.g., ParetoThreshold), and other 
linkage tuning and assessment tools. 

 

FastLink Package 

The fastLink package is designed for large-scale record linkage tasks and focuses on scalability and 
speed. It extends the functionalities of traditional probabilistic linkage methods and provides tools for 
estimating and visualizing the linkage process. Some of the key features included in this package are: 

• Scalability: Efficiently handles large datasets with millions of records by leveraging parallel 
computing. 

• Advanced Blocking: Implements multiple blocking schemes to ensure that the linkage process 
remains computationally feasible without sacrificing accuracy. 

• Unsupervised Learning: Automatically estimates parameters required for record linkage without 
the need for training data. 

• Visualization Tools: Provides tools for visualizing the linkage results and understanding the 
matching process. 

Both RecordLinkage and fastLink packages offer robust solutions for record linkage tasks in R. While 
RecordLinkage is more flexible and offers a variety of similarity measures and probabilistic matching, 
fastLink is optimized for performance and scalability, making it suitable for large data sets. 

https://cran.r-project.org/web/packages/RecordLinkage/index.html
https://cran.r-project.org/web/packages/fastLink/index.html
https://rpubs.com/Parrish_EPI/RecordLinkage
https://github.com/parrish-epi/R-recordLinkage
https://github.com/parrish-epi/R-recordLinkage
https://journal.r-project.org/archive/2010-2/RJournal_2010-2_Sariyar%2BBorg.pdf
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This exercise will focus on and provide an example using the RecordLinkage package as the approach is 
largely extendable to the fastLink package. For those interested in learning and using the fastLink 
package, check out these resources: 

• An introduction to fastLink for probabilistic record linkage 

• R package fastLink: Fast Probabilistic Record Linkage 

 
The example below demonstrates one approach to using the RecordLinkage package to perform record 
linkage in R. This includes loading data, pre-processing (cleaning) the data, comparing records, and 
identifying matches. While this example is not exhaustive and does not cover all the features provided 
by the package, it serves as a solid starting point for conducting record linkages. 

Linkage Set-up 

Prior to any linkage project, it is important to learn about each dataset as well as the elements 
contained within them, and have context for population distributions in the records being linked. 
It is also critical that you have your linkage purpose and expectation well-defined. 

The code and output below assume at a least a basic understanding of R; for example, how to install 
and load packages. The data sets used for this exercise were generated using two different generative 
models (ChatGPT and Google Gemini) and do not reflect actual individuals. 

For this example, the datasets were created to represent the real-life scenario where a health agency 
draws a sample from a birth record (dat2) and then links those sampled birth records to a population 
source (dat2) (e.g., hospital discharge records) where the individual may have multiple visits. The 
expectation is that we will link and retain all individuals from the sample and only the matching 
population records. This is important to establish up front because during the linkage process, we 
will identify the matching records and need to be sure to retain all non-matches from the sample 
(their values will be NULL/NA for all elements in the population source). 

We first need to load a few packages and data for this exercise. If you don’t have these packages, 
you’ll need to install the libraries. This exercise was completed using R version 4.4.0. 

Load packages 
 

 

 

 
  

  

 

  

  

 

  

 

 

https://www.naaccr.org/wp-content/uploads/2018/07/An-Introduction-to-Faslink-for-Probabilistic-Record-Linkage-Alexandersson.pdf
https://github.com/kosukeimai/fastLink
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Install Data 
 

 

Review Datasets 

After the data have been loaded, the first step is to inspect and review the data. During this process, 
we want to make sure that the data elements to be used for linkages (partial identifiers) are all 
formatted the same and all column names are identical. For these examples we have two datasets: 
dat1 and dat2. 

dat1 has 1183 records and 9 variables. 
dat2 has 302 records and 8 variables. 

Let’s first start by checking what names are in each of the datasets. 
 

 
## [1] "ID" "Last.Name" "First.Name"
 "Middle.Name" ## [5] "Date.of.Birth" "Sex" "Race"
 "UNID" 
## [9] "InSample" 

 

 
## [1] "ID" "ID_source" "GivenName" "MiddleName" 
"FamilyName" ## [6] "Sex" "DOB" "Race" 

 

 
 
 
 
 
 

# Read in data sets to be linked for this 
example # Population source 
git1<-'https://raw.githubusercontent.com/parrish-epi/R-recordLinkage/main/SourceA.csv'  
dat1<-read.csv(git1, fileEncoding = "ISO-8859-1") 

# Sample source 
git2<-'https://raw.githubusercontent.com/parrish-epi/R-recordLinkage/main/SourceB.csv'   
dat2<-read.csv(git2, fileEncoding = "ISO-8859-1") 

# add the data set to the start of the ID for convenience. 
dat1$UNID <- paste0("dat1_",dat1$UNID) 
dat2$ID_source <- 
paste0("dat2_",dat2$ID_source) 

#remove url sets 

rm('git1','git2') 

# View contents of data set 1 
names(dat1) 

# View contents of data set 2 
names(dat2) 
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Review Data Structure 

The base r function str() is helpful for viewing the contents of the data but dplyr::glimpse is also useful. 
 

 
## 'data.frame': 1183 obs. of 9 variables: 
## $ ID : int 1 2 3 4 6 7 8 9 10 12  
## $ Last.Name : chr "Patel" "Kim" "García" "Chan" ... 
## $ First.Name : chr "Amara " "Malik " "Sofia " "Hiro " ... ## $ 
Middle.Name : chr "Mei" "Giovanni" "" "" ... 
## $ Date.of.Birth: chr "6/28/2016" "8/18/2017" "9/22/2019" "7/17/2018" ... ##
 $ Sex : chr "Female" "Male" "Female" "Male" ... 
## $ Race : chr "Black" "White" "Black" "NHOPI" ... 
## $ UNID : chr "dat1_OFDEBNBNST" "dat1_98AQ2AIWZX" "dat1_R8EFSTH5I0" "dat1_MBR9ABVV5I" ... 
## $ InSample : int NA NA NA 1 NA NA 1 1 NA NA ... 

 

 
## 'data.frame': 302 obs. of 8 variables: 
## $ ID : int 4 8 9 15 16 22 23 24 28 34 ... 
## $ ID_source : chr "dat2_2018AB29797" "dat2_2019AB15569" "dat2_2019AB07650" "dat2_2016AB37928" ... 
## $ GivenName : chr "HIRO " "JOON " "KATARINA " "NADIA " ... 
## $ MiddleName: chr "NIKITA" "LEILA" "WOLFGANG" "RAVI" ... ##
 $ FamilyName: chr "CHAN" "SMITH" "GONZÁLEZ" "LEE" ... 
## $ Sex : chr "M" "M" "F" "F" ... 
## $ DOB : chr "2018-07-17" "2019-07-22" "2019-11-09" "2016-04-16" ... 
## $ Race : chr "NHOPI" "Black" "Asian" "NHOPI" ... 

 
Align Feature Order 
For the RecordLinkage package, we need to align the elements. In this exercise, we will align dat1 variable 
order to dat2. 

 

 
## 'data.frame': 1183 obs. of 9 variables: 
## $ ID : int 1 2 3 4 6 7 8 9 10 12 ... 
## $ UNID : chr "dat1_OFDEBNBNST"  "dat1_98AQ2AIWZX"  "dat1_R8EFSTH5I0"  "dat1_MBR9ABVV5I"  ... 
## $ First.Name : chr "Amara " "Malik " "Sofia " "Hiro " ... ## $ 
Middle.Name : chr "Mei" "Giovanni" "" "" ... 
## $ Last.Name : chr "Patel" "Kim" "García" "Chan" ... ##
 $ Sex : chr "Female" "Male" "Female" "Male" ... 
## $ Date.of.Birth: chr "6/28/2016" "8/18/2017" "9/22/2019" "7/17/2018" ... ##
 $ Race : chr "Black" "White" "Black" "NHOPI" ... 
## $ InSample : int NA NA NA 1 NA NA 1 1 NA NA ... 

 
 
 
 

# View contents of data set 1 
str(dat1) 

# View contents of data set 2 
str(dat2) 

# Making the order of the variables in the data set the same. 
dat1 <- dat1[,c(1,8,3,4,2,6,5,7,9)] 
str(dat1) 
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Identify duplicates 
 

 
## 
## FALSE
 TRUE ##
 986 
 197 

 

 
 

## 
## FALSE 
##
 30
2 

 

Align Datasets 

Next, we are going to align dat1 variable names and structure to that of dat2. Remember that the 
variable names, order, and structure must be the same in both datasets for the RecordLinkage package. 

Modify dat1 

dat1a <- dat1 %>% 
# ensure names of variables are the same between the two data sets. 
rename( 

GivenName = First.Name, 
MiddleName = Middle.Name, 
FamilyName = Last.Name, DOB 
= Date.of.Birth, ID_source = 
UNID 

) %>% 
# ensure coding of variables is the same between the two data sets. 
# perform basic data cleaning (up case, remove white space and spcial characters) 
mutate( 

Sex = ifelse(Sex == "Female", "F", ifelse(Sex == "Male", "M", NA)), DOB = mdy(DOB), 
across(contains("Name"), ~ toupper(.)), across(everything(), 
stringi::stri_trim), 
GivenName = gsub("[[:punct:][:blank:]]+", "", GivenName), 
MiddleName = gsub("[[:punct:][:blank:]]+", "", MiddleName), 
FamilyName = gsub("[[:punct:][:blank:]]+", "", FamilyName), 
across(c("GivenName",  "MiddleName",  "FamilyName"), 

~ stringi::stri_trans_general(str = ., id = "Latin-ASCII")), 
# Break apart date if needing to block to facilitate iterative block linking. 
DOB_YR = as.integer(year(DOB)), DOB_MO = 
as.integer(month(DOB)), DOB_DY = 
as.integer(day(DOB)) 
) %>% 

# Remove indicator specifying correct linkages (part of the test data for checking # accuracy but will 
not have this in a real data linkage) 

select(-InSample) 

# Duplicates in dat2 
table(duplicated(dat2$ID_source)) 

# Duplicates in dat1 

table(duplicated(dat1$UNID)) 
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De-duplicate records 
It is easiest to link de-duplicated records. This reduces redundancy and improves the estimated 
probability scores. It is important in a duplicated data set that represents unique events (e.g., hospital 
visits) to have an individual unique ID representing the patient, and a unique record level ID 
representing the visit (event). 

 dat1a.dedup <- dat1a %>% unique()  

 
Modify dat2 

 

 

 

Review Aligned Data Sets 

View contents of the two data sets 

Here we will use the dplyr::glimpse() function so we can quickly see the number of rows and columns as well. 
 

 
## Rows: 986 
## Columns: 11 
## $ ID <chr> "1", "2", "3", "4", "6", "7", "8", "9", "10", "12", "13", "~ 
## $ ID_source <chr> "dat1_OFDEBNBNST", "dat1_98AQ2AIWZX", "dat1_R8EFSTH5I0", "d~ ## $ 
GivenName <chr> "AMARA", "MALIK", "SOFIA", "HIRO", "ALEJANDRO", "AISHA", "J~ ## $ 
MiddleName <chr> "MEI", "GIOVANNI", "", "", "", "", "", "", "", "", "", "RAV~ ## $ FamilyName 
<chr> "PATEL", "KIM", "GARCIA", "CHAN", "SANCHEZ", "NGUYEN", "SMI~ ## $ Sex <chr> 
"F", "M", "F", "M", "M", "F", "M", "F", "M", "M", "F", "F",~ ## $ DOB <chr> "2016-06-28", 
"2017-08-18", "2019-09-22", "2018-07-17", "20~ 
## $ Race <chr> "Black", "White", "Black", "NHOPI", "AIAN", "AIAN", "Black"~ ## $ 
DOB_YR    <int> 2016, 2017, 2019, 2018, 2017, 2018, 2019, 2019, 2017, 2019,~ 
## $ DOB_MO    <int> 6, 8, 9, 7, 9, 11, 7, 11, 12, 11, 11, 4, 4, 11, 5, 10, 11, ~ 
## $ DOB_DY    <int> 28, 18, 22, 17, 27, 7, 22, 9, 27, 24, 29, 16, 4, 23, 31, 29~ 

 

 
 
 
 

## Rows: 302 

dat2a <- dat2 %>% 
# conduct the same data cleaning for dat2 as completed in dat1. 
mutate(across(everything(), stringi::stri_trim)) %>% mutate( 

DOB_YR = as.integer(year(DOB)), DOB_MO = 
as.integer(month(DOB)), DOB_DY = 
as.integer(day(DOB)), 
across(c("GivenName",  "MiddleName",  "FamilyName"), 

~ gsub("[[:punct:][:blank:]]+", "", .)), 
GivenName = stringi::stri_trans_general(str = GivenName, id = "Latin-ASCII"), MiddleName 
= stringi::stri_trans_general(str = MiddleName, id = "Latin-ASCII"), FamilyName = 
stringi::stri_trans_general(str = FamilyName, id = "Latin-ASCII") 

) 

# data structure for dat1 that has been cleaned and de-duplicated. 
dplyr::glimpse(dat1a.dedup) 

# data structure for dat2 that has been cleaned. 

dplyr::glimpse(dat2a) 



DATA LINKAGE 

8 

 

 

## Columns: 11 
## $ ID <chr> "4", "8", "9", "15", "16", "22", "23", "24", "28", "34", "3~ 
## $ ID_source  <chr> "dat2_2018AB29797", "dat2_2019AB15569", "dat2_2019AB07650",~ ## 
$ GivenName <chr> "HIRO", "JOON", "KATARINA", "NADIA", "EMRE", "ALIYAH", "OLI~ ## $ 
MiddleName <chr> "NIKITA", "LEILA", "WOLFGANG", "RAVI", "AMALIA", "ALINA", "~ ## $ 
FamilyName <chr> "CHAN", "SMITH", "GONZALEZ", "LEE", "JOHNSON", "HERNANDEZ",~ ## $ 
Sex <chr> "M", "M", "F", "F", "M", "F", "M", "F", "F", "F", "M", "F",~ ## $ DOB
 <chr>  "2018-07-17",  "2019-07-22",  "2019-11-09",  "2016-04-16",  "20~ 
## $ Race <chr> "NHOPI", "Black", "Asian", "NHOPI", "Black", "Black", "Whit~ ## $ 
DOB_YR    <int> 2018, 2019, 2019, 2016, 2020, 2017, 2016, 2018, 2018, 2020,~ 
## $ DOB_MO    <int> 7, 7, 11, 4, 4, 2, 8, 10, 3, 8, 4, 10, 9, 6, 3, 12, 7, 10, ~ 
## $ DOB_DY    <int> 17, 22, 9, 16, 4, 2, 14, 15, 3, 23, 18, 23, 5, 25, 19, 31, ~ 

Data preparation is critical for linkages. Before we move forward with the actual linkages, let’s first 
inspect the first five records of each dataset. Table 1 below displays the first five records from dataset 1, 
and Table 2 displays the first five records from dataset 2. 

Table 1: First five records of aligned dataset 1 (dat1) 
 

ID ID_source GivenName MiddleName FamilyName Sex  DOB Race DOB_YR  DOB_MO  DOB_DY 

908  dat1_9UTHP2F0IN 
725  dat1_WVW407E1DJ 

AHMED 
DANIELA 

N 
ROCIO 

ABDULLAH 
ACOSTA 

M 
F 

2016-09-14 
2017-12-26 

 
NHOPI 

2016 
2017 

9 
12 

14 
26 

137  dat1_AYPEOEQLU0 ROBIN EMILY ADAMS F 2020-09-23 Black 2020 9 23 
263  dat1_YQC5VAP7S3 MONIQUE DANIELLE ADAMS F 2016-06-07 Black 2016 6 7 

484  dat1_F6SMJX9ZAC JASON A ADAMS F 2020-12-18 White 2020 12 18 

 

 

Table 2: First five records of aligned dataset 2 (dat2) 
 

ID ID_source GivenName MiddleName FamilyName Sex DOB Race DOB_YR DOB_MO DOB_DY 

263 dat2_2016AB35131 MONIQUE DANIELLE ADAMS F 2016-06-07 Black 2016 6 7 
484 dat2_2020AB59638 JASON AARON ADAMS M 2020-12-18 White 2020 12 18 
750 dat2_2019AB06664 CAMILA JOSEFINA AGUAYO F 2019-03-16 Asian 2019 3 16 
729 dat2_2019AB74312 ANABEL LOURDES AGUILAR F 2019-03-09 Black 2019 3 9 

36 dat2_2016AB66469 YARA ADITI AHMED F 2016-10-23 Black 2016 10 23 

 
Finally, the skim function in the skimr() package provides a really nice tool for reviewing the data 
elements in the data frame. 

Skim function output for Dat1 - normalized and de-duplicated 
 

Data Summary 

 
Values 

Name dat1a.dedup 
Number of rows 986 
Number of columns 11 

Column type frequency: 
character 8 
numeric 3 

Group variables 

 Non

e Variable type: character 
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Skim function output for Dat2 - normalized 
 

Data Summary 

 

Values 
Name dat2a 
Number of rows 302 
Number of columns 11 

Column type frequency: 
character 8 
numeric 3 

 

Group variables

 Non

e Variable type: character 

Variable type: numeric 

 
 

 

skim_variable n_missing complete_rate min max empty n_unique whitespace 
1 ID 0 1 1 4 0 986 0 
2 ID_source 0 1 15 15 0 986 0 
3 GivenName 0 1 2 11 0 471 0 
4 MiddleName 0 1 0 11 131 353 0 
5 FamilyName 0 1 2 17 0 355 0 
6 Sex 54 0.945 1 1 0 2 0 
7 DOB 8 0.992 10 10 0 728 0 
8 Race 0 1 0 5 19 6 0 

Variable type: numeric 
skim_variable n_missing 

 
complete_rate 

 
mean 

 
sd 

 
p0 p25 

 
p50 p75 p100 

1 DOB_YR 8 0.992 2018. 1.31 2015 2017 2018 2019 2020 
2 DOB_MO 8 0.992 6.83 3.51 1 4 7 10 12 
3 DOB_DY 8 0.992 15.2 8.77 1 8 15 23 31 

 

skim_variable n_missing complete_rate min max empty n_unique whitespace 
1 ID 0 1 1 3 0 302 0 
2 ID_source 0 1 16 16 0 302 0 
3 GivenName 0 1 3 11 0 222 0 
4 MiddleName 0 1 2 11 0 177 0 
5 FamilyName 0 1 3 17 0 161 0 
6 Sex 0 1 1 1 0 2 0 
7 DOB 0 1 10 10 0 270 0 
8 Race 0 1 4 5 0 5 0 

 

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 

1 DOB_YR 0 1 2018. 1.32 2016 2017 2018 2019 2020 
2 DOB_MO 0 1 6.96 3.51 1 4 7 10 12 
3 DOB_DY 0 1 15.5 8.60 1 8 15 23 31 
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Data linkage 

Now that the two data sets to be combined are cleaned in the same way (normalized) and have the 
same naming and ordering of variables (standardized) we are ready to begin our linkages. The following 
figure provides a basic linkage flow diagram outlining the major points of a linkage project. 

 

Identifier Assessment 

It is helpful to start by reviewing how many duplicate records have the same combination of identifiers. 
This will help establish how “unique” the combination of identifiers is and what identifiers are needed to 
support accurate results. 

For this exercise, we will use the GivenName, MiddleName, FamilyName, Sex, and DOB for our linkages. 
We’ll then look at the combination uniqueness without DOB and then with just year of birth and then 
day of birth. This exercise is just to demonstrate the investigations that one can do to get an idea of the 
types of linkages to expect with the combination of identifiers to be used. 

 
Review of dat 1 identifiers 
 

 
 

Figure 1: General Data Linkage Flow Diagram 

 

 
 
 
 
 

# start by creating a little function to summarize and view each variable 

# based on GivenName, FamilyName, Sex, and DOB 
dat1a.dedup %>% group_by(GivenName,FamilyName,Sex,DOB) %>% 

summarise(Count = n()) %>% 
ungroup() %>% 
group_by(Count) %>% 
summarise(Dist = n()) 
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## # A tibble: 1 x 2 ##
 Count Dist 
## <int> <int> 
## 1  1
 986 

 

 
## # A tibble: 3 x 2 ##
 Count Dist 
## <int> <int> 
## 1  1
 881 
## 2 2 30 
## 3 3 15 

 

 

 
## # A tibble: 3 x 2 ##
 Count Dist 
## <int> <int> 
## 1  1
 963 
## 2 2 10 
## 3 3 1 

 

 
## # A tibble: 2 x 2 ##
 Count Dist 
## <int> <int> 
## 1  1
 974 
## 2 2 6 

 
 
 
 

# based on GivenName, FamilyName, Sex, and year 
dat1a.dedup %>% group_by(GivenName,FamilyName,Sex, DOB_YR) %>% summarise(Count 

= n()) %>% 
ungroup() %>% 
group_by(Count) %>% 
summarise(Dist = n()) 

# based on GivenName, FamilyName, and Sex 
dat1a.dedup %>% group_by(GivenName,FamilyName,Sex) %>% 

summarise(Count = n()) %>% 
ungroup() %>% 
group_by(Count) %>% 
summarise(Dist = n()) 

# based on GivenName, FamilyName, Sex, and month 
dat1a.dedup %>% group_by(GivenName,FamilyName,Sex, DOB_DY) %>% summarise(Count 

= n()) %>% 
ungroup() %>% 
group_by(Count) %>% 
summarise(Dist = n()) 
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From this quick assessment, we see that for the combination of identifiers to be used we have zero (0) 
duplicates which is great. However, we may need to “relax” the matching criteria by limiting the number 
of variables used. We can see that dropping date of birth (DOB) will induce some ubiquity for potentially 
matching records; however, use of day may be a feasible approach if we’re trying to increase the 
sensitivity of detection. 
 

Review of dat2 identifiers 
 

 
## # A tibble: 1 x 2 ##
 Count Dist 
## <int> <int> 
## 1  1
 302 

 

 

 

 

 
## # A tibble: 2 x 2 ##
 Count Dist 
## <int> <int> 
## 1  1
 288 
## 2 2 7 

 

 
## # A tibble: 2 x 2 ##
 Count Dist 
## <int> <int> 
## 1  1
 300 
## 2 2 1 

ungroup() %>% 
group_by(Count) %>% 
summarise(Dist = n()) 

# start by creating a little function to summarize and view each variable 

# based on GivenName, FamilyName, Sex, and DOB 
dat2a %>% group_by(GivenName,FamilyName,Sex,DOB) %>% 

summarise(Count = n()) %>% 
ungroup() %>% group_by(Count) 
%>% summarise(Dist = n()) 

# based on GivenName, FamilyName, and Sex 
dat2a %>% group_by(GivenName,FamilyName,Sex) %>% 

summarise(Count = n()) %>% 

# based on GivenName, FamilyName, Sex, and year 
dat2a %>% group_by(GivenName,FamilyName,Sex, DOB_YR) %>% 

summarise(Count = n()) %>% 
ungroup() %>% group_by(Count) 
%>% summarise(Dist = n()) 
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## # A tibble: 1 x 2 ##
 Count Dist 
## <int> <int> 
## 1  1
 302 

 
Like we saw for dat1, to use the partial identifiers we have zero (0) duplicates and similar results when 
dropping date of birth and looking at individual components of the date. 

 
Deterministic Matching 

It is always a good idea to do an exact match (deterministic link) on the combination of identifiers that 
will be used to set a baseline. This baseline will help you determine how much different (hopefully 
better) the linkages are by incorporating probabilistic matching. We’ve seen from our assessment above 
that using GivenName, LastName, Sex, and DOB to merge will not result in duplicate matches. 

We are going to demonstrate a simple baseline deterministic match by merging the data sets together. 

Here we merge dat1a.dedup into dat2a (right join), based on GivenName, LastName, Sex, and DOB. 
Because we don’t want duplicate variables, aside from the ID and ID_source variables, we drop those 
that aren’t involved with the merge. 

Table 3: First five records of merged datasets 
 

ID.x ID_source.x GivenName FamilyName Sex DOB ID.y ID_source.y MiddleName Race DOB_YR DOB_MO DOB_DY 

263 dat1_YQC5VAP7S3 MONIQUE ADAMS F 2016-06-07 263 dat2_2016AB35131 DANIELLE Black 2016 6 7 
NA NA JASON ADAMS M 2020-12-18 484 dat2_2020AB59638 AARON White 2020 12 18 
NA NA CAMILA AGUAYO F 2019-03-16 750 dat2_2019AB06664 JOSEFINA Asian 2019 3 16 
729 dat1_WNT1JPAJ5F ANABEL AGUILAR F 2019-03-09 729 dat2_2019AB74312 LOURDES Black 2019 3 9 

NA NA YARA AHMED F 2016-10-23 36 dat2_2016AB66469 ADITI Black 2016 10 23 

 

 
Because we did a right join, we should retain the same number of records as we had in dat2. Let’s not 
assume anything and check. Afterward, we’ll explore how many individuals in our dat2 did not merge 
with a record in dat1. From this we’ll calculate the linkage rate. 

 nrow(MergedDat) == nrow(dat2a)  
 

## [1] TRUE 

# based on GivenName, FamilyName, Sex, and month 
dat2a %>% group_by(GivenName,FamilyName,Sex, DOB_DY) %>% 

summarise(Count = n()) %>% 
ungroup() %>% group_by(Count) 
%>% summarise(Dist = n()) 

MergedDat <- dat1a.dedup %>% 
select(-MiddleName, -Race, -DOB_YR, -DOB_MO, -DOB_DY) %>% 
right_join(dat2a, by = c("GivenName" = "GivenName", 

"FamilyName" = "FamilyName", 
"Sex" = "Sex", 
"DOB" = "DOB")) 
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##  value count proportion 
## 1 Linked 205
 0.6788079 
## 2 nonLinked 97 0.3211921 

 
Using an exact match linkage (merge), the linkage “rate” was 67.9% 

 

Probabilistic Matching 

Now that we’ve normalized, standardized, and conducted a baseline merge, we are ready to conduct a 
probabilistic linkage. We are only going to go through a single approach to showcase how some of the 
tools work. 

The RecordLinkage package has a lot of nice features but does have some limitations. The most notable 
is it can be slow and require a lot of memory for large data sets. The authors provide two approaches 

“RLBigDataLinkage” and “compare.linkage.” With most public health data sets the RLBigDataLinkage() 
will need to be used. Because of this, although the example could use the compare.linkage, we will use 
the former for the example. 

Another limitation is the available string comparisons are limited to Jaro-Winkler, Levenshtein, and 
Soundex. Only a single comparator can be applied (i.e, no option to apply different comparators to 
different variables). 

We will use the Jaro-Winkler comparator without any blocking variables. 

 
 
 
 
 
 
 
 
 
 
 
 
 

# number of our sample source (dat2) that linked with a record in the # population source 
(dat1). 

SumLink <- 
MergedDat 
%>% 

summarise( 
Linked = sum(!is.na(ID_source.x)), nonLinked = 
sum(is.na(ID_source.x)) 

) %>% 
pivot_longer(cols = everything(), names_to = "value", values_to = "count") %>% mutate( 

proportion = count / sum(count) 
) 

as.data.frame(SumLink) 

https://files.eric.ed.gov/fulltext/ED325505.pdf
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Create matched pairs 

 

 
Once the comparisons have been made using the criteria specified, we will next apply the algorithm for 
calculating the probability of a match. Probably the most used is the Fellegi and Sunter stochastic frame- 
work. The RecordLinkage package, however, also provides the EpiLink and EM algorighms (see package 
documentation for details). 

The selected cutoff level depends on the algorithm choice, type of comparator, and level of desired 
sensitiv- ity/specificity. 

 
For this example, we’ll use the EpiLink algorithm. 

 

 
## 
## Linkage Data Set for large number of data ## 
## 302 records in first data set ## 986 
records in second data set ## 297772 
record pairs 

 

The respective weight functions calculate the probability of a match for each record in data set 1 with 
each record in data set 2 based on the comparator patterns specified. We need to classify the weights as 
links, potential links, or non-links. To make these classifications, we need to establish our acceptance 
threshold. The threshold is the probability level that above would be accepted as a link or below would 
be rejected. The threshold may also be a region where above would be accepted as a link, within would 
be potential, and below would be rejected. The area of uncertainty (potential matches) requires some 
sort of reconciliation (record review). 

As indicated above, choosing the thresholds is usually done through record review and classification. 
One of the tools in the RecordLinkage package is the getParetoThreshold() function, which can also be 
useful for identifying acceptance thresholds. However, with large data sets it can take a long time to run. 

#' first create a record pairs object. We are specifying the two data sets, the #' string comparator, and 
the specifying the referential location of the columns #' to NOT include when considering a match. This 
is why it is critical that the #' data sets are ordered and named the same! 
rpairs <- RecordLinkage:: RLBigDataLinkage(dataset1 = dat2a, 

dataset2 = dat1a.dedup, 
strcmp = TRUE, strcmpfun = "jarowinkler", exclude 
= c(1,2,4,8,9,10,11)) 

# If using a really large sample, block and iterate 
# (blocking subsets by exact match): this would block on Year 
## Not RUN ## 
# rpairs <- RecordLinkage:: RLBigDataLinkage(dataset1 = dat2a, # dataset2 
= dat1a.dedup, 
# strcmp = TRUE, strcmpfun = "jarowinkler", 
# exclude = c(1,2,4,8,9,10,11), 
# blockfld = c(9) 

# ) 

# create weights for each record pair 
rpairs <- RecordLinkage::epiWeights(rpairs) 
print(rpairs) 

# wts_fs <- RecordLinkage::fsWeights(rpairs) #Fellegi and Sunter (pair with fsClassify) # wts_eu <- 
RecordLinkage::emWeights(rpairs) #M and U probabillity assessment 
# using the EM algorithm (pair with emClassify) 

https://cran.r-project.org/web/packages/RecordLinkage/RecordLinkage.pdf
https://cran.r-project.org/web/packages/RecordLinkage/RecordLinkage.pdf
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It is often best to run it a few times with samples taken from the data or a smaller training data set. 
 

 
Based on the image from the getParetoThreshold() (see below) the long flat arm suggesting that it will 
be unlikely to identify correct matches below a weight of around 0.8. Based on the interval selected the 
suggested automatic acceptance threshold is 0.875. 

 
Figure 2: Mean Residual Life (MRL) plot. 

Classify Weights 

Now we’ll use the information and classify linkages. According to the RecordLinkage documentation for 
the epiClassify() function. “All record pairs with weights greater or equal threshold.upper are classified 
as links. Record pairs with weights smaller than threshold.upper and greater or equal threshold.lower 
are classified as possible links. All remaining records are classified as non-links.” 

Classify based on the ParetoThreshold 
 

 
## ================================================================================ 

 

# due to the time it takes to run, the function has been commented out and # replaced with the 
result after running it once. 

# pth <- RecordLinkage::getParetoThreshold(rpairs,interval=c(0.75, 1.0)) 
pth <- 0.875 

# note you can leave out the interval statement to choose the threshold from a plot. # 
RecordLinkage::getParetoThreshold(rpairs) 

# First classify links based on the ParetroThreshold 
eclsf <- RecordLinkage::epiClassify(rpairs, pth) 
# Next classify and return pairs with a probability between 0.75 and 1.0 
RlMtch <- RecordLinkage::getPairs( 

eclsf, min.weight=0.75, max.weight=1, single.row=FALSE 
) 

# Finally, update is_match based on the Class 
RlMtch$is_match <- with(RlMtch, ifelse(is.na(is_match) & Class=="L",1,"")) 
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Using the ParetoThreshold() as an automatic acceptance alone will likely result in poor results. As we 
can see. The linkages “L” in the table below suggest 389 linkages, when we only have 302 records. This is 
incorrect and leads to false positive matches. However, it is a great starting point for considering what 
levels will optimize manual review and minimize the number of reviews needed. 

 table(RlMtch$Class,useNA = "always")  

 
## 
##  L N 
<NA> ## 8164 389 
3693 0 

 
Classify informed by the ParetoThreshold with manual review Now we’ll specify intervals. We’ll automatically 
accept those with a probability of 1.0 and then review those with a probability between 0.8 and 0.99. 

 

 
## ================================================================================ 

 

 
Let’s look at the numbers linked and possible matches that need review by probability score. 

 
 table(RlMtch_1$Class)  

 
## 
## L P 
## 8164 205 3877 

 

 
 
 
 
 
 
 
 

# First classify links based on the ParetroThreshold 
eclsf_1 <- RecordLinkage::epiClassify( 

rpairs, threshold.upper = 1.0, threshold.lower = 0.75 
) 

# Next classify and return pairs with a probability between 0.75 and 1.0 
RlMtch_1  <-  RecordLinkage::getPairs( 

eclsf_1, min.weight=0.75, max.weight=1, single.row=FALSE 
) 

# Finally, update is_match based on the Class. 

RlMtch_1$is_match <- with(RlMtch_1, ifelse(is.na(is_match) & Class=="L",1,"")) 

# create bins for the probability scores (weights) 
RlMtch_1$cutpnt  <-  with(RlMtch_1,  cut(round(as.numeric(Weight),2), 

breaks=(seq(0.75,1, by = .01)), include.lowest = 
TRUE, right = TRUE), "") 

# print the counts by bin 
table(RlMtch_1$cutpnt) 
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## 
## [0.75,0.76] (0.76,0.77] (0.77,0.78] (0.78,0.79] (0.79,0.8] (0.8,0.81] 
## 1154 592 474 362 309 248 
## (0.81,0.82] (0.82,0.83] (0.83,0.84] (0.84,0.85] (0.85,0.86] (0.86,0.87] 
## 180 136 95 68 47 28 
## (0.87,0.88] (0.88,0.89] (0.89,0.9] (0.9,0.91] (0.91,0.92] (0.92,0.93] 
## 18 11 6 9 13 0 
## (0.93,0.94] (0.94,0.95] (0.95,0.96] (0.96,0.97] (0.97,0.98] (0.98,0.99] 
## 57 13 9 12 16 20 
## (0.99,1]      

## 205      
 

 

 
## 
## L P <NA> 
## [0.75,0.76] 0 0 1154 0 
## (0.76,0.77] 0 0 592 0 
## (0.77,0.78] 0 0 474 0 
## (0.78,0.79] 0 0 362 0 
## (0.79,0.8] 0 0 309 0 
## (0.8,0.81] 0 0 248 0 
## (0.81,0.82] 0 0 180 0 
## (0.82,0.83] 0 0 136 0 
## (0.83,0.84] 0 0 95 0 
## (0.84,0.85] 0 0 68 0 
## (0.85,0.86] 0 0 47 0 
## (0.86,0.87] 0 0 28 0 
## (0.87,0.88] 0 0 18 0 
## (0.88,0.89] 0 0 11 0 
## (0.89,0.9] 0 0 6 0 
## (0.9,0.91] 0 0 9 0 
## (0.91,0.92] 0 0 13 0 
## (0.92,0.93] 0 0 0 0 
## (0.93,0.94] 0 0 57 0 
## (0.94,0.95] 0 0 13 0 
## (0.95,0.96] 0 0 9 0 
## (0.96,0.97] 0 0 12 0 

 

## (0.97,0.98] 0 0 16 0 
## (0.98,0.99] 0 0 20 0 
## (0.99,1] 0 205 0 0 

## <NA> 8164 0 0 0 

 
 
 
 
 
 
 
 

# print the counts by bin by matching status (L = Link, N = nonLink, P = possibleLink) 

table(RlMtch_1$cutpnt,RlMtch_1$Class,useNA = "always") 
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Histogram of counts by bin for possible matches. 
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Figure 3: Histogram of counts by bin for possible matches. 

 
From the histogram and table, it is easy to see how quickly the amount of manual review can balloon to 
where thousands of records need reconciled. For this example, we will conduct manual reviews to 0.85 
and then proceed to lower match probability bins. We’ll stop once we’ve reviewed two lower bins with 
no successful matches. We will then assume all lower matches are non-matches. 

Depending on the goal of the linkage, the purpose of manual review may be different. A manual review 
may be conducted to establish the automatic acceptance level and quantify the error. It may also be a 
part of the normal linkage process where specificity of the linkages is critical. 

There are a couple options for conducting manual review. You can use the base r edit() function, export 
the file as a csv or excel file conduct the review and import back in, or track and update with r code 
based on the row reference. The editMatch() function in the RecordLinkage package opens up the r data 
editor and is typically used for creating minimal training datasets. 
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# Plot histogram of counts by bin for possible matches 

RlMtch_1 %>% 
filter(Class == "P") %>% group_by(cutpnt) 
%>% summarize(count = n()) %>% 
ggplot() + 

geom_col(aes(x = cutpnt, y = count)) + 
theme(axis.text.x = element_text(angle = 30, vjust = 0.95, hjust = 1)) + xlab("Probability match 
bin") + 
ylab("Count of possible matches") 
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Depending on your preference, the getPairs() function can present the pairs in a single row “getPairs(…, 
single.row=TRUE)” or multiple rows “getPairs(…, single.row=FALSE).” It is generally visually easier to 
work with the multiple rows for reviewing but does require more data wrangling once completed. This 
exercise will present one way of working with the multiple rows for review. 

If using the edit() in R to directly modify the underlying data, save your work as a new object (especially 
if you will not be finishing the review in a single sitting). 

We typically use the is_match field and set 1 = match, 2 = needs additional review, 3 = nonmatch, and 
leave blank for those not reviewed. With the multi-row view we only update the second record of the 
presented match set. 

Below is a screen shot of the edit() indicating how we update using the basic editor. For large projects 
however, we save the pairs as a csv file, conduct the manual review and then load the reviewed file for 
finalization. 

 

 

Figure 4: Image of potential matches from the r base editor. 

 
As a side note: make sure you develop a set of rules for your manual review that can be replicated. For 
the manual review in this exercise the following rules for matches were followed: 

 

1. Character(s) change in variable(s) that do not result in a known valid spelling of the name(s). 

2. A single change in date of birth year, month, or day (exception for 12/31 and 1/1 transpositions +/- 
5 days). 

3. A difference in sex specification with all other variables matching. 

4. Character(s) change in variables(s) that result in a valid name, but a valid middle name is the same. 

5. All other non-discernible potential matches reviewed by two people and classified. 

# Example of using the R editor. 
# mlr <- edit(RlMtch_1) 

# Saving a csv file and conducting manual review externally. 

# write.csv(RlMtch_1, "ManualReviewMatch.csv", row.names=FALSE) 
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Summarize Linkage 

After the manual review, we can summarize the review findings. 
 

 
##  

## 1 3 Sum 
## [0.75,0.76] 0 0 0 
## (0.76,0.77] 0 0 0 
## (0.77,0.78] 0 0 0 
## (0.78,0.79] 0 0 0 
## (0.79,0.8] 0 0 0 
## (0.8,0.81] 0 0 0 
## (0.81,0.82] 0 0 0 
## (0.82,0.83] 0 136 136 
## (0.83,0.84] 0 95 95 
## (0.84,0.85] 1 67 68 
## (0.85,0.86] 1 46 47 
## (0.86,0.87] 1 27 28 
## (0.87,0.88] 0 18 18 
## (0.88,0.89] 0 11 11 
## (0.89,0.9] 1 5 6 
## (0.9,0.91] 1 8 9 
## (0.91,0.92] 1 12 13 
## (0.92,0.93] 0 0 0 
## (0.93,0.94] 31 26 57 
## (0.94,0.95] 7 6 13 
## (0.95,0.96] 4 5 9 
## (0.96,0.97] 8 4 12 
## (0.97,0.98] 12 4 16 
## (0.98,0.99] 20 0 20 
## (0.99,1] 205 0 205 
## Sum 293 470 763 

 
 
 
 
 
 
 

# load manual reviewed data 
# Rev_pairs <- read.csv("ManualReviewMatch.csv") if ran locally. # retrieve from 
Github 
git3 <- 
'https://raw.githubusercontent.com/parrish-epi/R-recordLinkage/main/ManualReviewMatch.csv'      
Rev_pairs <-read.csv(git3, fileEncoding = "ISO-8859-1") 
rm(git3) 
## re-run the cutpnt code to ensure we have an ordered factor 
Rev_pairs$cutpnt <- with(Rev_pairs, cut(round(as.numeric(Weight),2), 

breaks=(seq(0.75,1, by = .01)), include.lowest = 
TRUE, right = TRUE), "") 

# summarize links by weight bin. 

addmargins(table(Rev_pairs$cutpnt,Rev_pairs$is_match)) 
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Next, let’s figure out the linkage match % for each bin and then cumulatively. 
 

 

 
 

Table 4: Cumulative linkage match % by bin 
 

cutpnt nonLink Link total PropLink Clink Ctotal cPropLink 

(0.99,1] 0 205 205 1.0000000 205 205 1.0000000 
(0.98,0.99] 0 20 20 1.0000000 225 225 1.0000000 
(0.97,0.98] 4 12 16 0.7500000 237 241 0.9834025 
(0.96,0.97] 4 8 12 0.6666667 245 253 0.9683794 
(0.95,0.96] 5 4 9 0.4444444 249 262 0.9503817 
(0.94,0.95] 6 7 13 0.5384615 256 275 0.9309091 
(0.93,0.94] 26 31 57 0.5438596 287 332 0.8644578 
(0.91,0.92] 12 1 13 0.0769231 288 345 0.8347826 
(0.9,0.91] 8 1 9 0.1111111 289 354 0.8163842 
(0.89,0.9] 5 1 6 0.1666667 290 360 0.8055556 
(0.88,0.89] 11 0 11 0.0000000 290 371 0.7816712 
(0.87,0.88] 18 0 18 0.0000000 290 389 0.7455013 
(0.86,0.87] 27 1 28 0.0357143 291 417 0.6978417 
(0.85,0.86] 46 1 47 0.0212766 292 464 0.6293103 
(0.84,0.85] 67 1 68 0.0147059 293 532 0.5507519 
(0.83,0.84] 95 0 95 0.0000000 293 627 0.4673046 

(0.82,0.83] 136 0 136 0.0000000 293 763 0.3840105 

 
From this, we can see we detected fewer matches at the lower match probabilities. If we were going to 
be developing an automatic acceptance threshold, this would be much more informative than relying 
only on the ParetoThreshold calculated previously. For example, if I decided to set a threshold at >0.95, 
95% of the record pairs in this range would be expected to be true matches. 

To finish this off and calculate our linkage rates for dat2 (our sample), which is the proportion that 
success- fully matched with the dat1 (population source), we need to merge our linked data to the full 
data. To do this we need to do a little bit of data wrangling. 

summarise(Count = n()) %>% ungroup() 
%>% 
pivot_wider(names_from = is_match, values_from = Count, values_fill = 0) %>% mutate(total 
=`3` + `1`) %>% 
mutate(PropLink = `1`/total,) %>% rename(nonLink = `3`, 
Link = `1`) %>% arrange(desc(as.numeric(row.names(.)))) 
%>% mutate(Clink = cumsum(Link), 

Ctotal = cumsum(total)) %>% 
mutate(cPropLink = Clink/Ctotal), 

caption = "Cumulative linkage match % by bin" 
) 

kable( 
Rev_pairs %>% filter(!is.na(is_match)) %>% 

group_by(cutpnt,is_match)  %>% 
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## [1] 4082 

 
 nrow(MP_2)  

 
## [1] 4082 

## combine the ID's and include the matching criteria contained in MP_2 

MatchedPairsFinal <- cbind(MP_2[,c(3,13:16)], MP_1[,3]) 

# First Remove blank rows 

Matched_pairs  <-  Rev_pairs  %>%  filter(!is.na(id)) 

# Add a row index to keep track of the pairs 

Matched_pairs <- Matched_pairs %>% mutate(row_index = row_number()) 

# Separate the data into two data frames 
MP_1 <- Matched_pairs %>% filter(row_index %% 2 != 0) MP_2 <- 
Matched_pairs %>% filter(row_index %% 2 == 0) 

# Verify that they have the same number of records AND DO NOT sort 
if (nrow(MP_1) == nrow(MP_2)) { 

# Combine the ID's and include the matching criteria contained in MP_2 
MatchedPairsFinal <- MP_2 %>% 

select(ID_source, is_match, Class, Weight, cutpnt) %>% rename(ID_source1 = 
"ID_source") %>% 
bind_cols(MP_1  %>% 

select(ID_source) %>% rename(ID_source2 = 
"ID_source") 

) %>% 
filter(is_match == 1) 

} else { 
stop("The two data frames do not have the same number of records") 

} 

 
Now that we have the data in a nice format, before we merge back to our original sample (dat2), we 
need to check if we created any duplicates. This can be done at different times in the linkage process, 
but for simplicity, we’re just doing it once here. 

Check for duplicated records 

 table(duplicated(MatchedPairsFinal$ID_source1))  

 
## 
## FALSE 
##
 29

# remove blank rows 
Matched_pairs  <-  Rev_pairs  %>%  filter(!is.na(id)) 
# split into two dataframes 
MP_1 <- Matched_pairs %>% filter(as.numeric(row.names(.)) %% 2!=0) MP_2 <- 
Matched_pairs %>% filter(as.numeric(row.names(.)) %% 2==0) ## verify that they have 
the same number of records AND DO NOT sort nrow(MP_1) 
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3 

 
This is great; no duplicates. This means we didn’t link an individual twice. If we had, a simple strategy 
would be to retain the match with the highest probability match score. 

Let’s now merge the linked data back to dat2 (our sample) and calculate the linkage rate. 
 

 

 

 
##  value count proportion 
## 1 Linked 293 0.96381579 
## 2 nonLinked 11 0.03618421 

 
With manual review based on our probability scores we returned a linkage ‘rate’ of 96.4% compared to 
67.9% using a deterministic exact match. If we were feeling particularly ambitious, we could inspect the 
remaining nonlinked records or conduct a second round of linkages with the remaining records using a 
different, relaxed set of criteria. 

 

Conclusion 

In this example, we demonstrated the use of the RecordLinkage() package in R to perform record linkage 
a crucial process for identifying and merging duplicate records across data sets. We started by loading 
and pre-processing the data, ensuring it was clean and standardized. We then created a record linkage 
object, specifying the fields for comparison and string comparator to enhance efficiency. By computing 
comparison weights and classifying the matches, we were able to identify and review potential matches 
between records from different data sets. This example serves as a basic approach, showcasing the 
essential steps and functions of the RecordLinkage package, and can be extended to more complex 
scenarios and data sets as needed. 
 

 

 
Jared Parrish, PhD 
Parrish Analytics and Epidemiology Consulting 
Email: parrish.epi@gmail.com 
URL:  https://github.com/parrish-epi/R-recordLinkage 

all.x  =  TRUE) 

# create a summary table of the linked data 
SumLinkT <- 
FinalMatchedData %>% 

summarise( 
Linked = sum(!is.na(ID_source1)), nonLinked 
= sum(is.na(ID_source1)) 

) %>% 
pivot_longer(cols = everything(), names_to = "value", values_to = "count") %>% mutate( 

proportion = count / sum(count) 
) 

as.data.frame(SumLinkT) 

FinalMatchedData  <-  merge(dat2,  MatchedPairsFinal, 
by.x = "ID_source", 
by.y = "ID_source2", 

mailto:parrish.epi@gmail.com
https://github.com/parrish-epi/R-recordLinkage

	Background
	RecordLinkage Package
	FastLink Package

	Linkage Set-up
	Load packages
	Install Data
	Review Datasets
	Review Data Structure
	Align Feature Order
	Identify duplicates

	Align Datasets
	Modify dat1
	rename(
	mutate(
	De-duplicate records
	Modify dat2

	Review Aligned Data Sets
	View contents of the two data sets
	Skim function output for Dat1 - normalized and de-duplicated
	Skim function output for Dat2 - normalized


	Data linkage
	Identifier Assessment
	Review of dat2 identifiers

	Deterministic Matching
	Probabilistic Matching
	Create matched pairs
	Classify Weights
	Classify based on the ParetoThreshold
	Summarize Linkage
	## combine the ID's and include the matching criteria contained in MP_2

	Check for duplicated records


	Conclusion

